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Numerical Fourier transforms applied to
Moliere’s series function and
error analyses with the Takahasi-Mori
theory of error evaluation

Takao Nakatsuka, Kazuhide Okei’, and Naoya Takahashi’

Abstract
Method of numerical Fourier transforms is applied to derive Moliere’s series
functions for multiple Coulomb scattering. The results are compared with those
derived by analytical method. Convergence of the numerical transforms is

confirmed by applying Takahasi-Mori theory of error evaluation on the results.

1 Introduction

To solve diffusion equations in theoretical studies of particle transport, methods
of functional transforms are effective. We can solve the equation comparatively
easily by the method in the image space of transforms and we can derive the
resultant probability density by applying inverse transforms to the solution. In the

final stage of derivation we usually used analytical methods for particle transport
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problems, searching for exact analytical solutions in mathematical tables of the
functional transforms or applying analytical approximation methods e.g. the
saddle point method [1, 2] or others. If numerical methods for functional
transforms were applicable, our knowledge of particle transport problems for fast
charged particles and cascade shower particles would be increased. So we
examine the reliability of numerical functional transforms applied to derive
Moliere’s series functions [3, 4, 5] by comparing results with those derived by
analytical methods. |
Andreo, Medin, and Bielajew have already applied a numerical method of
functional transforms on derivation of Moli¢re’s series function by using a tool in
mathematical libraries [6]. It will be necessary and interesting to confirm
reliability of numerical functional transforms by error analyses. We apply
Takahasi-Mori theory of error evaluation based on the complex function theory
[7] to investigate accuracy and efficiency of the method applied on the particle
transport problems. Accuracy of our analytical result on Molieére’s series function
of higher orders [8] will also be confirmed in these investigations. To examine
efficiency of Takahasi-Mori theory in the particle transport problems will also be

valuable for future applications in those problems.

2 Numerical Fourier transforms for Moliére’s series function

The spatial angular distribution and the projected angular distribution of fast
charged particle traversing through material, /($)9d 8 and fp()d ¢, are expressed

by Moliere series expansion as

£ =FO>9) + BP9 + BP9 +.. ., 1)
fo©) = f5(p) + B ) + B 20 +. . ., )

where the series functions f®(8) and f3" () are expressed as
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We evaluate both the Moliere series functions by numerical integration by

trapezoidal method :

n

. h&E 22 Rk hRk? | |
"(9) 2 — E E 1 5
£09) oy ldo(@hk)e ( 2 n 1 ) ) (5)
2h v 22 (hk? R\
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where }:J denotes the values should be taken half at the both ends of summation.

The conditions of convergence are

1. The step size /& of each summation is taken 107,
2. The summation interval reaches up to where amplitudes of oscillating

integrand do not exceed 107.

We compared the results with those derived by analytical method [8] in Figs. 3—9
for spatial distributions and in Figs. 10-16 for projected distributions. The both
results derived by numerical functional transforms and analytical method agree
very well.-And our results also agree very well with Andreo et al.’s derived using

tools in mathematical library and their numerical integrations [6].

3 Error analyses of numerical integrations with Takahasi-Mori
theory

Takahasi and Mori developed a new method to evaluate errors of numerical

integration based on the complex function theory [7]. We can approximate a
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definite integral

b
I = / f@dz (7)

by a numerical integration
Ia = ZAkf(ak). » (8)

According to Takahasi and Mori, applying Cauchy integral theorem

@)

27rz Z—T

f(z) = dz, €)

error of the numerical integration &I can be evaluated as

Al =] -1,

f(Z) Ay
27r1j[(/ dz z—w_zz—a,f( ))

=_1_. (mZ_a—Z A )f(z)dz

211 z—b zZ —ay

1
= }f ®(2)f (2)dz, (10)

where @(z) is called the characteristic function of error evaluation determined by
the method of numerical integration irrespective of the integrand function.
In case of a numerical integration for infinite interval (— 00,00) by the

trapezoidal method,

o fore)

I =/0 g@dz~h Y glhk). (11)

k=—00

Then the characteristic function ®(z) is determined as
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where the sign + should agree with the sign of the imaginary component of z.
In case of a numerical integration for semi-infinite interval (0, c©) by the

trapezoidal method,

oo

I =/ g(a:)da:'thg(hk). - (13)
Jo k=0

Then the characteristic function ®(z) is determined as

z h z
D(z) = ln(—— E) +Z—“’lﬁ(— E)

z h z Tz
=ln|l-—)———-9¢|—) - t—. 14
n( h) 2z ¢(h) Rt a9
As it approximately satisfies
1
W(z)~Inz — —, (15)
2z v _
®(z) can be well approximated as
: ’ nz
Pz~ —7 (i Sign(Im z) + cot 7) , (16)

by that for infinite interval [7].
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4  Error analyses of Moliére series function for projected angular
distribution

The integral (4) for semi-infinite interval can be evaluated by the integral for
infinite interval with the integrand extended on the negative real axis, as the
integrand is even. So we can evaluate the error of (4) by the formula for infinite

interval, thus the error can be evaluated as

1 |
Alff”) = —f ®(z)g(z)dz, where a7n
27
' 1 2 /52 2\ " _
9(z) = @cos«oz)e“f(%ln%) , o (8)

with ®(z) of Eq. (12).. The path of complex integration is a pair of parallel straight
lines, from iyo + i 00 to iyp — i oo with Yo positive and from iyo — i 00 to iyp + 100
with yo negative.

Forn =0,
w L 2
ALY = ——— ¢ D(z)cos(pz)e %dz. (19)
7 27

This integral can be well evaluated by the Saddle point method [1, 2] :

AL~ — 2 g0 | 20)

where the saddle points exist at

Z =t yoi, where — . 21)

For n > 1, the integrand g(z) has a branch point at the origin. So we take
account a schnitt between the origin and the saddle point z = yoi defined above
and take the path as shown in Fig. 1. The contribution to AI{"™ from the saddle
points is about (2/ \/7_r)e_”°2/ * and is negligible. The value of A" is determined

from the curvilinear integral at both sides of the schnitt :
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Figure 1 : Path of complex integral for AL with n > 1.
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For enough small step size of numerical integration the factor e’ /* cosh (¢y)

can be neglected as they satisfy /4 >> ¢ and 7/h >.1, so we have
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Table 1 : Values of ¢(-function.

n ¢(n)

3 1.20206
5  1.03693
7 1.00835
9 1.00201
11 1.00049
13 1.00012

n—1 ~2n—1
2 2
::JM%—MW%+DO%9 (f) , @3

where ¢(k) denotes ¢-function [9], as indicated in Table 1. The results of Al are

indicated in Figs. 17-23 for n of 0 to 6.

5 Error analyses of Moliere series function for spatial angular
distribution
Moliére series function for spatial angular distribution (3) is derived from the
integral over semi-infinite interval (0, o). The error of numerical integration (5)

can be evaluated by the complex integral (10) of Takahasi-Mori theory :

1

AI® = — f D(z)g(z)dz,  where (24)
27
1 2(zF 22 !

g(?)=;—!zfo(:92)e (_ZIHZ)’ (25)

with the approximated éharacteristic function @(z) of Eq. (12) [7]. The path of
complex integration is taken as a straight line parallel to the real axis with positive
imaginary compbnenf Yo and real component from oo to 0, a straight line on the
imaginary axis from Iyo to. — iyo, and a straight line parallel to the real axis with
negative imaginary component — Yo and real component from O to 00, as shown in

Fig. 2.
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Figure 2 : Path of complex integral for AT®™,

Taking account g(z) is odd and ®(z) falls extremely rapidly at positions far

from the real axis, A can be evaluated as
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Table 2 : Values of Bernoulli number.

n B.

2 ©1/6

4 —1/30

6 - 1/42
-8 —1/30

10 5/66

12 —691/2730

14 7/6

‘where B, denotes Bernoulli number [9], as indicated in Table 2. The results of

AI™ are indicated in Figs. 24-30 for n of 0 to 6.

6 Conclusions and discussions

We have evaluated Moliere series functions by numerical functional transforms
up to 6-th higher terms for both spatial and projected angular distributions. The
results have agreed very well with those derived by analytical method [8]. The
results also have agreed very well with Andreo et al.’s given for spatial angular
distributions [6].

Convergences of our numerical functional transforms are confirmed by error
analyses of numerical integration developed by Takahasi and Mori [7]. Numerical
transforms for the first term for projected angular distribution has converged as
negative exponential with the division rate (division number p:er unit length) and
those for other projected distributions and for spatial distributions have converged
as negative powér of respective index with the division rate, all satisfying
Takahasi-Mori predictions.

These results will prove reliability of numerical functional transforms applied in
particle transport problems, as well as efficiencies of Takahasi-Mori theory in

these problems.



Numerical Fourier transforms applied to Moliére’s series function and error analyses with the Takahasi-Mori theory of error evaluation 31

Aknowledgments
The authors wish to express their deep gratitude to Prof. Jun Nishimura for valuable advices
and continuous encouragements.

References

[1] 1. Nishimura, in Handbuch der Physik, Band 46, edited by S. Fliigge (Springer, Berlin,
1967), Teil 2, p. 1.

[2] T.Nakatsuka, Phys. Rev. D35, 210 (1987).

[3] G.Molitre, Z. Naturforsch. 2a, 133 (1947).

[4] G.Moliere, Z. Naturforsch. 3a, 78 (1948).

[5] H.A. Bethe, Phys. Rev. 89, 1256 (1953).

[6] P.Andreo, J. Medin, and A. F. Bielajew, Med. Phys. 20, 1315 (1993).

(7] H. Takahasi and M. Mori, Rep. Compt. Centre, Univ. Tokyo, 3, 41 (1970).

[8] T.Nakatsuka, Journal of Okayama Shoka University, 42, No. 2, 1 (2006).

[9] Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical
Tables, edited by M. Abramowitz and 1. A. Stegun (Dover, New York, 1965).



32

Moliere spatial Function(0)

2 =
‘(\
‘t\
X
1.5 b
3
3
\
2 1Ff !
X
\
0.5 ‘y‘
.
-
\“
. 0 - *‘h*‘ s e 0 N S .
0 1 2 3 4 5

Figure 3: Comparison of Moliere series function for spatial angular
distribution, f®(8), derived by the numerical method (dots) and
the analytical method (lines).
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Figure 4 : Comparison of f(9). Figure 5 : Comparison of f@(9).



Figure 6 : Comparison of F(9).
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Figure 8 : Comparison of f©(:9).
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Moliere spatial Function(4)
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Moliere Projected Function(0)
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Figure 10: Comparison of Moliére- series function for projected angular
distribution, fi”(y), derived by the numerical method (dots) and
the analytical method (lines).
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Figure 11 : Comparison of (¢). Figure 12 : Comparison of £2(y).
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Figure 15 : Comparison of £(¢).
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Moliere Projected Function AI(0)
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Figure 17: Error evaluation, AL, vs the division rate in derivation of Moliere

series functlon for pro;ected angular distribution. Our calculatlons
(dots) agree well with Takahasi-Mori predictlons (lines).
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Figure 18 : Evaluation ALY, Figure 19 : Evaluation A,
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Figure 20 : Evaluation ALY,
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Figure 22 : Evaluation AL,
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Moliere Spatial Function AI(0)
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Figure 24: Error evaluation, AI?, vs the division rate in derivation of Moliére

series function for spatial angular distribution. Our calculatlons
(dots) agree well with Takahasi-Mori predictions (lines).
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Figure 25 : Evaluation AT %, Figure 26 : Evaluation A7,
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Figure 29 : Evaluation AI®, Figure 30 : Evaluation AT,
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